3044am永利集团
SOE
Chow Institute
User Center
中
EN
About WISE
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
SOE
Chow Institute
User Center
中
EN
About WISE
Introduction to WISE
Contact Us
Map and Direction
People
Committee of Academic Consultants
Faculty Directory
Staff Directory
Research
Publications
Working Papers
Facilities&Centers
Education
Overview
Undergraduate Programs
Graduate Programs
Study-Abroad MA Programs
Exchange Programs
Executive Education
News & Events
News
Announcements
Conferences
Seminars & Conferences
Job Openings
Research
Home
->
Research
->
Publications
->
Content
Research
Publications
Working Papers
Facilities&Centers
Finance & Economics Experimental Lab
MOE Key Lab in Econometrics
Fujian Provincial Key Lab in Statistics
Center for Econometrics Research
Center for Financial Research
Center for Research in Labor Economics
Center for Macroeconomics Research
Center for Statistics Research
Center for Information Technology
SAS Center for Excellence in Econometrics
High-Speed Computing Cluster
Maximum Entropy Autoregressive Conditional Heteroskedasticity Model
Id:2099
Date:20131014
Status:published
ClickTimes:
作者
Sung Y. Park, Anil K. Bera
正文
In many applications, it has been found that the autoregressive conditional heteroskedasticity (ARCH) model under the conditional normal or Student’s t distributions are not general enough to account for the excess kurtosis in the data. Moreover, asymmetry in the financial data is rarely modeled in a systematic way. In this paper, we suggest a general density function based on the maximum entropy (ME) approach that takes account of asymmetry, excess kurtosis and also of high peakedness. The ME principle is based on the efficient use of available information, and as is well known, many of the standard family of distributions can be derived from the ME approach. We demonstrate how we can extract information functional from the data in the form of moment functions. We also propose a test procedure for selecting appropriate moment functions. Our procedure is illustrated with an application to the NYSE stock returns. The empirical results reveal that the ME approach with a fewer moment functions leads to a model that captures the stylized facts quite effectively.
JEL-Codes:
关键词:
Maximum entropy density; ARCH models; Excess kurtosis; Asymmetry; Peakedness of distribution; Stock returns data
TOP